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Basic Principles 

• Concept → A novel aqueous solvent system that will integrate amine, potassium 

    carbonate, and ammonia to attain high CO2 capture rates, reduce energy  

    demands and capital costs 
 

• Principles → CO2 captured is transferred from one solvent to another by  

    chemical methods before the final solvent is thermally regenerated 

 

 
 

STEP Purpose 

1:  Amine                    →  High CO2 capture rate 

 

2:  K2CO3                    →  Precipitate KHCO3 as a solid = 

                                          much less water than amine solution 

 

3:  KHCO3/Ammonia →  Low regeneration temperature;  

                                           low heat capacity 
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~100% CO2 



Project Objective 
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• Develop a solvent system that will reduce both energy demands and 

   capital costs aiming at attaining DOE’s goal of no more than 35%  

   increase in COE 

Typical Amine Solvent Systems Non-conventional Solvent System 



Project Tasks 

• Additives 

   – Capable of capture CO2 and transfer absorbed  

       CO2 to potassium carbonate with fast rates 

   – Inexpensive, low vapor pressure, stable, and  

       benign (low toxicity) 

 

• Transformation 

   – Chemistry of CO2 transformation 

 

• Energy demands 

   – Solvent regeneration mass/energy balance 

 

• Process Assessment and technology transfer 

   – Integrated absorption and regeneration  

   – Preliminary techno-economic analysis 
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Performance of Chemically Regenerated Amine  
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• CO2 capture rates can be maintained with  

   repetitive absorption/regeneration cycles 



Phase Separation, Species Distribution, 
Phase Diagram, and Chemistry 

• Samples taken: 1. during absorption, 2. after absorption/before regeneration, 

   and 3. after regeneration/before absorption 

• Upper and lower liquid phases analyzed by NMR (Bruker  AVB-400 & 600) 

• Solid precipitates analyzed by laser Raman Spectroscopy 



Phase Diagrams* 
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Benefits of phase separation: 

• Increase capture efficiency due to smaller bicarbonate and carbonate conc. in 

     upper lean solvent 

• Prevent amine from degradation due to its confinement in chem. transformation  

     loop 

* 0.443 mole CO2/mole BL 

• Carbonate and bicarbonate can  mostly 

    be excluded from upper phase  

• Amines can mostly be excluded   

   from lower phase 



Regeneration of K2CO3 

                        Pathway                             ∆Hº      Drawback        Benefits 

                                                                (kJ/kg CO2) 

 

2KHCO3(s)→K2CO3(l)+H2O(l)+CO2(g)     1479     Slurry handling     Reduce sensible,  

2KHCO3(s)→K2CO3(l)+H2O(g)+CO2(g)    2479                           latent to < 1000; 

2KHCO3(s)→K2CO3(s)+H2O(l)+CO2(g)     2180                           Reagent stable   

2KHCO3(s)→K2CO3(s)+H2O(g)+CO2(g)    3180                           Low heat capacity 

Water < 40% 

                                                                                                                                                  no degrade.                                                                                                                             

2KHCO3+NH2CO2NH4+H2O↔K2CO3+2NH4HCO3                             

2NH4HCO3→NH2CO2NH4+CO2+2H2O                                          Low decomp. temp 

 

 

MEA carbamate → MEA + CO2(g)              1636     Sensible 2191            Mature  

Water  ~ 70%                                                              latent 676   

                                                                                                                Reagent degrade       

                                                                                                                 

 
Steam only w/ NH4 species 

1 

w/ NH4 species 

2 

Avg. CO2 

production rate (kg/h) 
0.0487 0.0621 0.108 

KHCO3 decomposition rates: 

• May reduce stripper size 



Advantages 

• Reduce energy penalty 

          –  Low sensible and latent heat 

              Solid/slurry, small heat capacity, Low regeneration temp. 

          –  Using low quality steam and/or waste heat  
 

• Reduce capital costs 

          –  High regeneration rates 
 

• Reduce reagent loss and equipment corrosion 

          –  Amines not exposed to high temp. 

          –  Employ benign, low cost, and thermal stable chemicals 
 

 

 

               



Challenges 

          Challenges                                            Mitigation 

 

 

• Could precipitate in absorber        Control L/G and/or temp. 

 

• Solid/slurry handling                      Engineering system analysis 

                                                              

 

 

 



Performance Schedule 

Task

1. Project management and planning

2. Install walk-in fumehoods

     Acquire system components
100%

3. Setup CO2 capture system    

     Determine Raman efficiencies
100%

4. Absorption of CO2
100%

5.Chemical transformation
85%

6. Reagent regeneration and CO2 

ppproduction
60%

7. Process assessment and 

     technology transfer
40%

June 2008 - May 2009 June 2009 - May 2010 June 2010 - May 2011 June 2011 - May 2012 June 2012 - May 2013

• Chemical transformation: slightly behind schedule as additional effort required 

     to figure out the chemistry 

• Reagent regeneration and CO2 production: slightly ahead of schedule 

• Process assessment and tech transfer: on schedule 
 

  



Plans for Future Development 

• In this project  

        – Mass and energy balance 

        – Integrated absorption and regeneration tests 

        – Process chemistry and assessment 

        – Industrial collaboration and technology Transfer 
 

• After this project – team approach 

        – Scale up demonstration 

        – Techno-Economic analysis 

        – EH&S implications 
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