

Development of Chemical Additives for Reducing CO₂ Capture Costs

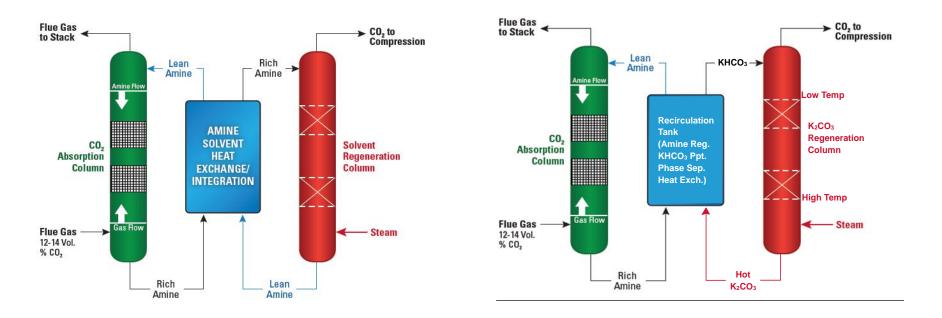
Ted Chang Lawrence Berkeley National Laboratory

Presented at 2012 NETL CO₂ Capture Technology R&D Meeting July 9-13, 2012

Project Status

- Funding: DOE \$ 1,250 K
- Project period: 6/1/08 5/31/13
- Participants: Ted Chang PI
 Y. Li Postdoc
 C.Y. Liao Graduate student
- DOE/NETL Manager: Elaine Everitt/Dave Lang

Basic Principles



- Concept \rightarrow A novel aqueous solvent system that will integrate amine, potassium carbonate, and ammonia to attain high CO₂ capture rates, reduce energy demands and capital costs
- Principles \rightarrow CO₂ captured is transferred from one solvent to another by chemical methods before the final solvent is thermally regenerated

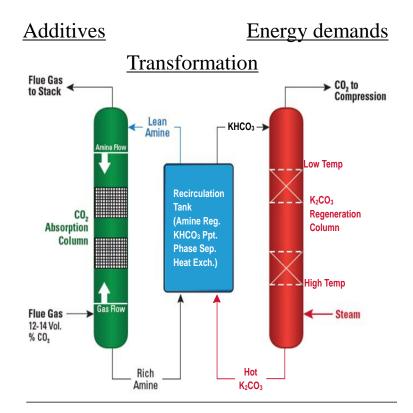
	STEP Purpose				
12-15% CO ₂ 1: CO ₂	Amine \rightarrow	High CO ₂ capture rate			
2: CO ₂	$K_2CO_3 \rightarrow$	Precipitate $KHCO_3$ as a solid = much less water than amine solution			
3: ~100% CO ₂	KHCO ₃ /Ammonia →	Low regeneration temperature; low heat capacity			

Project Objective

• Develop a solvent system that will reduce both energy demands and capital costs aiming at attaining DOE's goal of no more than 35% increase in COE

Typical Amine Solvent Systems

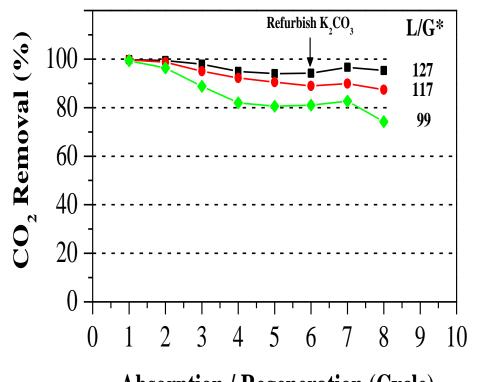
Non-conventional Solvent System


rrr

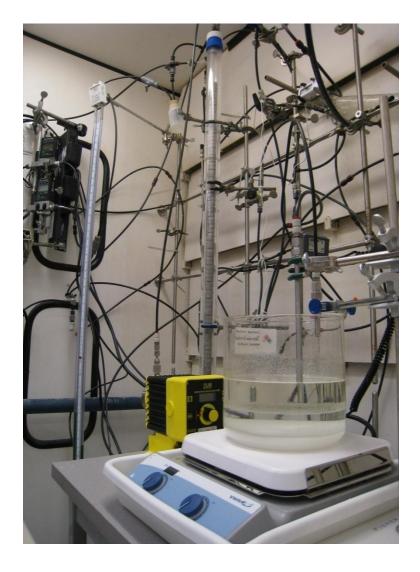
BERKELEY

Project Tasks

- Capable of capture CO_2 and transfer absorbed CO_2 to potassium carbonate with fast rates
- Inexpensive, low vapor pressure, stable, and benign (low toxicity)
- Transformation
 - Chemistry of CO₂ transformation
- Energy demands
 - Solvent regeneration mass/energy balance
- Process Assessment and technology transfer
 - Integrated absorption and regeneration
 - Preliminary techno-economic analysis



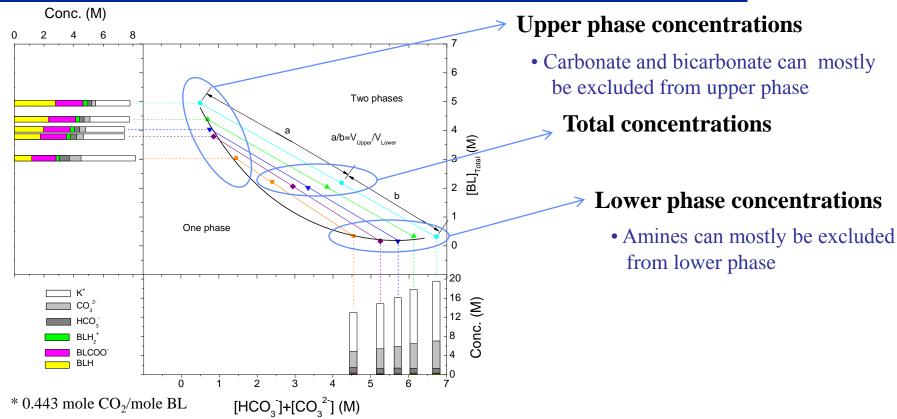
Process assessment and technology transfer


Performance of Chemically Regenerated Amine

Absorption / Regeneration (Cycle)

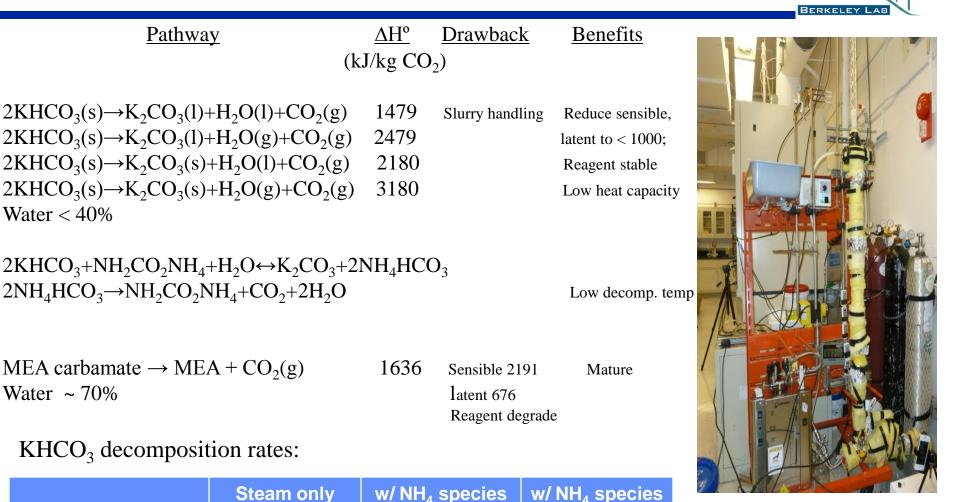
• CO₂ capture rates can be maintained with repetitive absorption/regeneration cycles

Phase Separation, Species Distribution, Phase Diagram, and Chemistry



- Samples taken: 1. during absorption, 2. after absorption/before regeneration, and 3. after regeneration/before absorption
- Upper and lower liquid phases analyzed by NMR (Bruker AVB-400 & 600)
- Solid precipitates analyzed by laser Raman Spectroscopy

Phase Diagrams*



Benefits of phase separation:

- Increase capture efficiency due to smaller bicarbonate and carbonate conc. in upper lean solvent
- Prevent amine from degradation due to its confinement in chem. transformation loop

Regeneration of K₂CO₃

KHCO₃ decomposition rates:

Water < 40%

Water $\sim 70\%$

Pathway

	Steam only	w/ NH ₄ species 1	w/ NH ₄ species 2
Avg. CO ₂ production rate (kg/h)	0.0487	0.0621	0.108

• May reduce stripper size

Advantages

- Reduce energy penalty
 - Low sensible and latent heat
 - Solid/slurry, small heat capacity, Low regeneration temp.
 - Using low quality steam and/or waste heat
- Reduce capital costs
 - High regeneration rates
- Reduce reagent loss and equipment corrosion
 - Amines not exposed to high temp.
 - Employ benign, low cost, and thermal stable chemicals

Mitigation

- Could precipitate in absorber
- Solid/slurry handling

Control L/G and/or temp.

Engineering system analysis

Performance Schedule

					BERKELET LAB
Task	June 2008 - May 2009	June 2009 - May 2010	June 2010 - May 2011	June 2011 - May 2012	June 2012 - May 2013
1. Project management and planning					
2. Install walk-in fumehoods	1000/				
Acquire system components	100%				
3. Setup CO2 capture system					
Determine Raman efficiencies	100%				
4. Absorption of CO2			4000/		
			100%		
5.Chemical transformation			050/		
			85%		
6. Reagent regeneration and CO2				60%	
production				00%	
7. Process assessment and				400/	
technology transfer				40%	

- Chemical transformation: slightly behind schedule as additional effort required to figure out the chemistry
- Reagent regeneration and CO₂ production: slightly ahead of schedule
- Process assessment and tech transfer: on schedule

Plans for Future Development

- In this project
 - Mass and energy balance
 - Integrated absorption and regeneration tests
 - Process chemistry and assessment
 - Industrial collaboration and technology Transfer
- After this project team approach
 - Scale up demonstration
 - Techno-Economic analysis
 - EH&S implications

- Coworkers: Yang Li and Chang-yu Liao, LBNL
 NMR instrument support: Chris Canlas, College of Chemistry,
 U.C. Berkeley
- Special thanks to DOE/NETL project managers: Elaine Everitt and David Lang for their guidance and management
- This work was supported by DOE under Contract DE-AC02-05CH11231 through the NETL